5^2x-1=1/25

Simple and best practice solution for 5^2x-1=1/25 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5^2x-1=1/25 equation:



5^2x-1=1/25
We move all terms to the left:
5^2x-1-(1/25)=0
We add all the numbers together, and all the variables
5^2x-1-(+1/25)=0
We get rid of parentheses
5^2x-1-1/25=0
We multiply all the terms by the denominator
5^2x*25-1-1*25=0
We add all the numbers together, and all the variables
5^2x*25-26=0
Wy multiply elements
125x^2-26=0
a = 125; b = 0; c = -26;
Δ = b2-4ac
Δ = 02-4·125·(-26)
Δ = 13000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{13000}=\sqrt{100*130}=\sqrt{100}*\sqrt{130}=10\sqrt{130}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{130}}{2*125}=\frac{0-10\sqrt{130}}{250} =-\frac{10\sqrt{130}}{250} =-\frac{\sqrt{130}}{25} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{130}}{2*125}=\frac{0+10\sqrt{130}}{250} =\frac{10\sqrt{130}}{250} =\frac{\sqrt{130}}{25} $

See similar equations:

| 9h-32=40 | | 13/8=u/12 | | 2^2+11y=y^2+3y-28 | | 5(2x-1)=1/25 | | x^2-7x+12=(x-4)(x-3) | | (x-4)(x-3)=x^2-7x+12 | | 48x-3)=-76 | | 2y^2=260 | | (W-1)2=2w2-11w+19 | | (2x-1)-5=-6 | | 0=-64x^2-96x+640 | | X+(x-4)=190 | | 5−3g=14 | | 7(2x-1)=18-19x | | 7(2x-1)=18x-19x | | x-2/x+4-1-2x/x-4=2+3x2 | | 7(2x+1)=18-19x | | (4x^2)-2x+10=0 | | 0=(4x^2)-2x+10 | | 9x−4=7x+6 | | -u+233=107 | | 41-u=163 | | y2-10y-3=0 | | 2x−3=12−x | | 3x+2=10−x | | n^2+9n-552=0 | | 2x/11=31 | | 4=8-7d | | 40=84-7d | | 13+5=8x-15 | | 41=6-7w | | 2y2-3y-5=0 |

Equations solver categories